THE APPROXIMATION OF BOUNDARY CONDITIONS OF THE
THIRD KIND IN CERTAIN PROBLEMS OF STEADY-~STATE
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We examine the error which results from the approximation of boundary conditions of the
third kind by boundary conditions of the first kind, in the analytical solution of the Laplace
equation for nonuniform regions and mixed boundary conditions.

In the theoretical and experimental solution of a number of problems relating to steady-state heat
transfer, particularly extensive attention was devoted to the method based on the substitution of the thermal
resistance of the heat boundary layer between the solid and the ambient medium by the thermal resistance —

equal in magnitude — of a conditional additional layer of the solid material under consideration,
§

In theoretical investigations the area of application for this method is generally limited to complex
one-dimensgional problems, As regards two-dimensional problems, the problem of the applicability to these
of the method of the additional layer is as yet, to the best of our knowledge, totally untreated in the litera-
ture.

The analysis presented below is devoted to the problem of a penetrating and heat-conducting inclusion.

1. Formulation of the Problem., We are to determine the temperature field 7', y') in a plate of
thickness 0, provided that the temperatures of the medium are specified (tj;) as well as the heat-transfer
coefficients (a;, and agyt) for the inside (y' = 0) and outside (y' = 0) surfaces, respectively. The plate con-
tains a penetrating rectangular inclusion of width @, The coefficients of thermal conductivity for the inclu-
sion and the plate are, respectively, equal toA; andA,,

In dimensionless quantities the problem reduces to the solution of the differential equation

8 P8 (1)
0x? dy?
with the following boundary conditions:
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2. The Exact Solution, TLet us present the function ; in the form of the sum of two functions

6i (X, y) = ui (y) + Ui (X, y)s (8)
the first of which satisfies the ordinary differential equation
2
d*u, -0 ©)
dy?

and the original nonuniform boundary conditions (4) and (5), while the second function satisfies the original
Laplace equation (1), (2), 3), (6), and (7), as well as the uniform boundary conditions derived from (4) and
(5) by replacing the right-hand member in (5) by zero,

Having solved (9) in conjunction with (4} and (5), we find that

u; = n.__.l__iiy,_ (10)
14 e + Bi
and, consequently,
T —— (1
I+ - + Bi

To find the function vi(x, y) we will use the Fourier method of separating variables,
Assuming that
o ) =X Y (), (12)

we find from (1) two ordinary differential equations whose solution for the corresponding boundary condi-
tions will be

X; =C,chp,yx, (13)
Xy = Coexp(—Bp), {14)
Y; = B;cos B,y -+ Bisin f,y. (15)
Consequently, using the Fourier series expansion of the eigenfunctions, we have
Uy = 2 Cinxinyin’ (16)
n=I

where the summation is performed over successively increasing positive roots of the characteristic equa~

tion

B — k Bi2

to B, == LD
Finally, having determined from {6) and (7) the values of the constants Cyy and Cyy, we find the un~

known function for the temperature field in the zone of the inclusion (84) and in the zone of the plate itself

(B9):
N V.Y, chpy,
ei=u,~—E et Pt (1)
sk ch ok + 1 sh Bk
2M2n
IF nY n - n —
8, —uz+2 -2 eipé B (=8 | (19)
1 4. 22222 oth Bin
where

1
j‘ {1y —up) Yindy
lIrin =2

(20)

[

887



TABLE 1. Relative Temperature A0;, at the Boundary Between Two
Semiinfinite Plates (Bi = 2.25, k = 8/3)

Asfhe ‘ 1

1,67 2,0 2,5 | 3,33 ’ 5 ! 10 i o
According to [1] | 010,044} 0,062 0,085 0.112 0,141 0,176 0,215*
According to (30)] ¢ {0,050} 0,070 0,095 0,126 0,164 0,213 0,276

“Extrapoluted

3. Approximate Solution., Within the framework of the above-cited approximation we will condition-
ally increase the plate thickness 6 by Aj/aj, from the inside and by Aj/agyt from the outside. In dimension-
less coordinates this will indicate a conditional thickening by 1/Bi and by 1/kBi, respectively.

As before, we will seek the solution in the form of sum (8) of two functions, The first of these func-
tions must satisfy (9) and the nonuniform binary conditions:

" (__ %) —0, @1)

ui(l—l———leT)=1. 22)

As regards the second function vi, it must satisfy the uniform boundary conditions with respect to the
y coordinate:

U (x, ——];l—) =0, (23)

1
Ui(-xv 1+_—k-§l—)

0, {24)

and conditions (2) and (3) with respect to the x coordinate.

Using the Fourier method and performing transformations similar to those in section 2, we finally

obtain
0, = u, — 21 ¥,.ch mw;h sin any , (25)
dwed  chnnf + —?;1_ shang
2
; ¥, exp [— nw (x — &)} sin nnw,
92 —_ u2 + 2 P ;\’2( ] 2 , (26)
proyy i + 7"— Cth t’LnE
1
where
1
2 (typ— uim)[ I 4 - (— 1)n]
Vi = , (27)

uB; Binn
and the values of u; and up;, as before, are determined from (10) and (11).

The advantage of the approximate solution (25) and (26) in comparison with the exact solution (18) and
(19) lies in the comparative simplicity of the norming factor (27) and most importantly in the fact that there
is no need to solve the two-parameter transcendental equation (17).

4, Evaluation of Approximation Accuracy. From (25) and (26), assuming that x =& andy =0, we can
determine the dimensionless temperature of the inside surface at the boundary of the inclusion zone:

W, Sin s, (28)
14 %— cth nng

1

0i(8) = ujp,t

n=1
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If the width a of the inclusion is sufficiently great, we can assume that £~ <. When two semiinfinite
plates are in contact, formula (28) admits of substantial simplifications. Indeed, since

o

E—}l— sinnnz = —g—~(1 —2),

n==1
for £ — © from (28) we find

A8y = B;(E) — ity = Hiny— Uine
4 l 7\12
._+_ —_=
A'1
Table 1 gives a comparison of the values of A8;, found by the method of electrical modeling [1] and
is in rather good agreement with the results of the exact solution, with the values calculated from (30).

As we can see from the data in the table, in the rangeA;/A, > 1.5 of practical utilization the approxi-
mate solution yields values for A 64, that are overstated by approximately 15%. In this case, with an in~
crease in the parameter A, /A, this divergence increases, at the limit (as A;/A, = =) reaching the maximum
error of 28%.

NOTATION
x = x'/6 and y = y'/ﬁ are dimensionless coordinates;
) is the thickness of the plate;
£ =a/20 is the dimensionless width of the inclusion;

is the temperature of the plate or of the inclusion;

t is the temperature of the ambient medium;

6 = tin — TVt — toyt) is the dimensionless temperature;

o is the heat-transfer coefficient;

Ag is the coefficient of thermal conductivity;
Bi = 0j0/A4 is the Biot number;

T
k = gyt /ain.

Subscripts

i=1 denotes the inclusion zone;

i=2 denotes the plate zone;

in denotes the inside (y = 0) surface;
out denotes the outside y = 1) surface.
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